Copied to
clipboard

G = C42⋊D14order 448 = 26·7

1st semidirect product of C42 and D14 acting via D14/C7=C22

metabelian, supersoluble, monomial, 2-hyperelementary

Aliases: C421D14, M4(2)⋊16D14, C4≀C25D7, (D4×D7)⋊4C4, (Q8×D7)⋊4C4, D42D74C4, Q82D74C4, (C4×D7).48D4, D28.5(C2×C4), D4.11(C4×D7), C4.201(D4×D7), Q8.11(C4×D7), Dic14⋊C44C2, D284C46C2, (C4×C28)⋊10C22, C4○D4.19D14, C28.360(C2×D4), C42⋊D79C2, (D7×M4(2))⋊9C2, C22.28(D4×D7), D42Dic72C2, C28.18(C22×C4), Dic14.5(C2×C4), (C2×Dic7).37D4, (C4×Dic7)⋊3C22, (C22×D7).23D4, C4.Dic73C22, (C2×C28).261C23, D14.8(C22⋊C4), C71(C42⋊C22), C4○D28.10C22, (C7×M4(2))⋊14C22, Dic7.14(C22⋊C4), (C7×C4≀C2)⋊6C2, C4.18(C2×C4×D7), (D7×C4○D4).2C2, (C4×D7).5(C2×C4), (C7×D4).5(C2×C4), (C7×Q8).5(C2×C4), (C2×C14).25(C2×D4), C2.26(D7×C22⋊C4), (C2×C4×D7).29C22, C14.25(C2×C22⋊C4), (C7×C4○D4).2C22, (C2×C4).368(C22×D7), SmallGroup(448,355)

Series: Derived Chief Lower central Upper central

C1C28 — C42⋊D14
C1C7C14C28C2×C28C2×C4×D7D7×C4○D4 — C42⋊D14
C7C14C28 — C42⋊D14
C1C4C2×C4C4≀C2

Generators and relations for C42⋊D14
 G = < a,b,c,d | a4=b4=c14=d2=1, cac-1=ab=ba, dad=ab-1, cbc-1=dbd=b-1, dcd=c-1 >

Subgroups: 828 in 154 conjugacy classes, 51 normal (all characteristic)
C1, C2, C2, C4, C4, C22, C22, C7, C8, C2×C4, C2×C4, D4, D4, Q8, Q8, C23, D7, C14, C14, C42, C42, C22⋊C4, C4⋊C4, C2×C8, M4(2), M4(2), C22×C4, C2×D4, C2×Q8, C4○D4, C4○D4, Dic7, Dic7, C28, C28, D14, D14, C2×C14, C2×C14, C4≀C2, C4≀C2, C42⋊C2, C2×M4(2), C2×C4○D4, C7⋊C8, C56, Dic14, Dic14, C4×D7, C4×D7, D28, D28, C2×Dic7, C2×Dic7, C7⋊D4, C2×C28, C2×C28, C7×D4, C7×D4, C7×Q8, C22×D7, C22×D7, C42⋊C22, C8×D7, C8⋊D7, C4.Dic7, C4×Dic7, Dic7⋊C4, D14⋊C4, C4×C28, C7×M4(2), C2×C4×D7, C2×C4×D7, C4○D28, C4○D28, D4×D7, D4×D7, D42D7, D42D7, Q8×D7, Q82D7, C7×C4○D4, Dic14⋊C4, D284C4, D42Dic7, C7×C4≀C2, C42⋊D7, D7×M4(2), D7×C4○D4, C42⋊D14
Quotients: C1, C2, C4, C22, C2×C4, D4, C23, D7, C22⋊C4, C22×C4, C2×D4, D14, C2×C22⋊C4, C4×D7, C22×D7, C42⋊C22, C2×C4×D7, D4×D7, D7×C22⋊C4, C42⋊D14

Smallest permutation representation of C42⋊D14
On 112 points
Generators in S112
(1 83 108 85)(2 109)(3 71 110 87)(4 111)(5 73 112 89)(6 99)(7 75 100 91)(8 101)(9 77 102 93)(10 103)(11 79 104 95)(12 105)(13 81 106 97)(14 107)(16 35 43 69)(18 37 45 57)(20 39 47 59)(22 41 49 61)(24 29 51 63)(26 31 53 65)(28 33 55 67)(72 88)(74 90)(76 92)(78 94)(80 96)(82 98)(84 86)
(1 83 108 85)(2 86 109 84)(3 71 110 87)(4 88 111 72)(5 73 112 89)(6 90 99 74)(7 75 100 91)(8 92 101 76)(9 77 102 93)(10 94 103 78)(11 79 104 95)(12 96 105 80)(13 81 106 97)(14 98 107 82)(15 34 56 68)(16 69 43 35)(17 36 44 70)(18 57 45 37)(19 38 46 58)(20 59 47 39)(21 40 48 60)(22 61 49 41)(23 42 50 62)(24 63 51 29)(25 30 52 64)(26 65 53 31)(27 32 54 66)(28 67 55 33)
(1 2 3 4 5 6 7 8 9 10 11 12 13 14)(15 16 17 18 19 20 21 22 23 24 25 26 27 28)(29 30 31 32 33 34 35 36 37 38 39 40 41 42)(43 44 45 46 47 48 49 50 51 52 53 54 55 56)(57 58 59 60 61 62 63 64 65 66 67 68 69 70)(71 72 73 74 75 76 77 78 79 80 81 82 83 84)(85 86 87 88 89 90 91 92 93 94 95 96 97 98)(99 100 101 102 103 104 105 106 107 108 109 110 111 112)
(1 60)(2 59)(3 58)(4 57)(5 70)(6 69)(7 68)(8 67)(9 66)(10 65)(11 64)(12 63)(13 62)(14 61)(15 91)(16 90)(17 89)(18 88)(19 87)(20 86)(21 85)(22 98)(23 97)(24 96)(25 95)(26 94)(27 93)(28 92)(29 105)(30 104)(31 103)(32 102)(33 101)(34 100)(35 99)(36 112)(37 111)(38 110)(39 109)(40 108)(41 107)(42 106)(43 74)(44 73)(45 72)(46 71)(47 84)(48 83)(49 82)(50 81)(51 80)(52 79)(53 78)(54 77)(55 76)(56 75)

G:=sub<Sym(112)| (1,83,108,85)(2,109)(3,71,110,87)(4,111)(5,73,112,89)(6,99)(7,75,100,91)(8,101)(9,77,102,93)(10,103)(11,79,104,95)(12,105)(13,81,106,97)(14,107)(16,35,43,69)(18,37,45,57)(20,39,47,59)(22,41,49,61)(24,29,51,63)(26,31,53,65)(28,33,55,67)(72,88)(74,90)(76,92)(78,94)(80,96)(82,98)(84,86), (1,83,108,85)(2,86,109,84)(3,71,110,87)(4,88,111,72)(5,73,112,89)(6,90,99,74)(7,75,100,91)(8,92,101,76)(9,77,102,93)(10,94,103,78)(11,79,104,95)(12,96,105,80)(13,81,106,97)(14,98,107,82)(15,34,56,68)(16,69,43,35)(17,36,44,70)(18,57,45,37)(19,38,46,58)(20,59,47,39)(21,40,48,60)(22,61,49,41)(23,42,50,62)(24,63,51,29)(25,30,52,64)(26,65,53,31)(27,32,54,66)(28,67,55,33), (1,2,3,4,5,6,7,8,9,10,11,12,13,14)(15,16,17,18,19,20,21,22,23,24,25,26,27,28)(29,30,31,32,33,34,35,36,37,38,39,40,41,42)(43,44,45,46,47,48,49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64,65,66,67,68,69,70)(71,72,73,74,75,76,77,78,79,80,81,82,83,84)(85,86,87,88,89,90,91,92,93,94,95,96,97,98)(99,100,101,102,103,104,105,106,107,108,109,110,111,112), (1,60)(2,59)(3,58)(4,57)(5,70)(6,69)(7,68)(8,67)(9,66)(10,65)(11,64)(12,63)(13,62)(14,61)(15,91)(16,90)(17,89)(18,88)(19,87)(20,86)(21,85)(22,98)(23,97)(24,96)(25,95)(26,94)(27,93)(28,92)(29,105)(30,104)(31,103)(32,102)(33,101)(34,100)(35,99)(36,112)(37,111)(38,110)(39,109)(40,108)(41,107)(42,106)(43,74)(44,73)(45,72)(46,71)(47,84)(48,83)(49,82)(50,81)(51,80)(52,79)(53,78)(54,77)(55,76)(56,75)>;

G:=Group( (1,83,108,85)(2,109)(3,71,110,87)(4,111)(5,73,112,89)(6,99)(7,75,100,91)(8,101)(9,77,102,93)(10,103)(11,79,104,95)(12,105)(13,81,106,97)(14,107)(16,35,43,69)(18,37,45,57)(20,39,47,59)(22,41,49,61)(24,29,51,63)(26,31,53,65)(28,33,55,67)(72,88)(74,90)(76,92)(78,94)(80,96)(82,98)(84,86), (1,83,108,85)(2,86,109,84)(3,71,110,87)(4,88,111,72)(5,73,112,89)(6,90,99,74)(7,75,100,91)(8,92,101,76)(9,77,102,93)(10,94,103,78)(11,79,104,95)(12,96,105,80)(13,81,106,97)(14,98,107,82)(15,34,56,68)(16,69,43,35)(17,36,44,70)(18,57,45,37)(19,38,46,58)(20,59,47,39)(21,40,48,60)(22,61,49,41)(23,42,50,62)(24,63,51,29)(25,30,52,64)(26,65,53,31)(27,32,54,66)(28,67,55,33), (1,2,3,4,5,6,7,8,9,10,11,12,13,14)(15,16,17,18,19,20,21,22,23,24,25,26,27,28)(29,30,31,32,33,34,35,36,37,38,39,40,41,42)(43,44,45,46,47,48,49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64,65,66,67,68,69,70)(71,72,73,74,75,76,77,78,79,80,81,82,83,84)(85,86,87,88,89,90,91,92,93,94,95,96,97,98)(99,100,101,102,103,104,105,106,107,108,109,110,111,112), (1,60)(2,59)(3,58)(4,57)(5,70)(6,69)(7,68)(8,67)(9,66)(10,65)(11,64)(12,63)(13,62)(14,61)(15,91)(16,90)(17,89)(18,88)(19,87)(20,86)(21,85)(22,98)(23,97)(24,96)(25,95)(26,94)(27,93)(28,92)(29,105)(30,104)(31,103)(32,102)(33,101)(34,100)(35,99)(36,112)(37,111)(38,110)(39,109)(40,108)(41,107)(42,106)(43,74)(44,73)(45,72)(46,71)(47,84)(48,83)(49,82)(50,81)(51,80)(52,79)(53,78)(54,77)(55,76)(56,75) );

G=PermutationGroup([[(1,83,108,85),(2,109),(3,71,110,87),(4,111),(5,73,112,89),(6,99),(7,75,100,91),(8,101),(9,77,102,93),(10,103),(11,79,104,95),(12,105),(13,81,106,97),(14,107),(16,35,43,69),(18,37,45,57),(20,39,47,59),(22,41,49,61),(24,29,51,63),(26,31,53,65),(28,33,55,67),(72,88),(74,90),(76,92),(78,94),(80,96),(82,98),(84,86)], [(1,83,108,85),(2,86,109,84),(3,71,110,87),(4,88,111,72),(5,73,112,89),(6,90,99,74),(7,75,100,91),(8,92,101,76),(9,77,102,93),(10,94,103,78),(11,79,104,95),(12,96,105,80),(13,81,106,97),(14,98,107,82),(15,34,56,68),(16,69,43,35),(17,36,44,70),(18,57,45,37),(19,38,46,58),(20,59,47,39),(21,40,48,60),(22,61,49,41),(23,42,50,62),(24,63,51,29),(25,30,52,64),(26,65,53,31),(27,32,54,66),(28,67,55,33)], [(1,2,3,4,5,6,7,8,9,10,11,12,13,14),(15,16,17,18,19,20,21,22,23,24,25,26,27,28),(29,30,31,32,33,34,35,36,37,38,39,40,41,42),(43,44,45,46,47,48,49,50,51,52,53,54,55,56),(57,58,59,60,61,62,63,64,65,66,67,68,69,70),(71,72,73,74,75,76,77,78,79,80,81,82,83,84),(85,86,87,88,89,90,91,92,93,94,95,96,97,98),(99,100,101,102,103,104,105,106,107,108,109,110,111,112)], [(1,60),(2,59),(3,58),(4,57),(5,70),(6,69),(7,68),(8,67),(9,66),(10,65),(11,64),(12,63),(13,62),(14,61),(15,91),(16,90),(17,89),(18,88),(19,87),(20,86),(21,85),(22,98),(23,97),(24,96),(25,95),(26,94),(27,93),(28,92),(29,105),(30,104),(31,103),(32,102),(33,101),(34,100),(35,99),(36,112),(37,111),(38,110),(39,109),(40,108),(41,107),(42,106),(43,74),(44,73),(45,72),(46,71),(47,84),(48,83),(49,82),(50,81),(51,80),(52,79),(53,78),(54,77),(55,76),(56,75)]])

64 conjugacy classes

class 1 2A2B2C2D2E2F4A4B4C4D4E4F4G4H4I4J4K7A7B7C8A8B8C8D14A14B14C14D14E14F14G14H14I28A···28F28G···28U28V28W28X56A···56F
order122222244444444444777888814141414141414141428···2828···2828282856···56
size112414142811244414142828282224428282224448882···24···48888···8

64 irreducible representations

dim1111111111112222222224444
type+++++++++++++++++
imageC1C2C2C2C2C2C2C2C4C4C4C4D4D4D4D7D14D14D14C4×D7C4×D7C42⋊C22D4×D7D4×D7C42⋊D14
kernelC42⋊D14Dic14⋊C4D284C4D42Dic7C7×C4≀C2C42⋊D7D7×M4(2)D7×C4○D4D4×D7D42D7Q8×D7Q82D7C4×D7C2×Dic7C22×D7C4≀C2C42M4(2)C4○D4D4Q8C7C4C22C1
# reps11111111222221133336623312

Matrix representation of C42⋊D14 in GL4(𝔽113) generated by

98000
1911200
7216150
3243581
,
98000
731500
4083980
36212115
,
996700
381400
278876
2610234105
,
92413497
6347054
221740100
451811147
G:=sub<GL(4,GF(113))| [98,19,72,32,0,112,16,43,0,0,15,58,0,0,0,1],[98,73,40,36,0,15,83,21,0,0,98,21,0,0,0,15],[99,38,27,26,67,14,8,102,0,0,8,34,0,0,76,105],[92,63,22,45,41,47,17,18,34,0,40,111,97,54,100,47] >;

C42⋊D14 in GAP, Magma, Sage, TeX

C_4^2\rtimes D_{14}
% in TeX

G:=Group("C4^2:D14");
// GroupNames label

G:=SmallGroup(448,355);
// by ID

G=gap.SmallGroup(448,355);
# by ID

G:=PCGroup([7,-2,-2,-2,-2,-2,-2,-7,758,219,58,136,851,438,102,18822]);
// Polycyclic

G:=Group<a,b,c,d|a^4=b^4=c^14=d^2=1,c*a*c^-1=a*b=b*a,d*a*d=a*b^-1,c*b*c^-1=d*b*d=b^-1,d*c*d=c^-1>;
// generators/relations

׿
×
𝔽